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Abstract

Gene expression profiling experiments provide a wealth of data for use in the analysis

of the transcriptome and have yielded results that have helped in the classification

of disease type and suggestions of possible biological pathways. Two major types

of platforms exist, cDNA platforms where ESTs are spotted onto a glass microscope

slide and oligonucleotide platforms where each gene is represented by small lengths of

approximately 20 base pairs of DNA. Due to this difference in set-up and subsequent

use the two platforms tend to yield different results when the data is analysed by a

common method such as a clustering algorithm.

This project seeks to find a general tool to cluster expression profile results from

both sets of data simultaneously. A new clustering algorithm that has been presented

at the Royal Statistical Society London in May 2004 will be utilised in the tool. Its

claimed advantage over existing algorithms is that it can cluster objects on only small

subsets of their attributes that show a signal above or below the background noise of

the majority of the data. This type of data structure is typical of that produced by the

microarray platforms and suggests the application of the new algorithm to their study.
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Chapter 1

Introduction

1.1 Gene Microarrays

Gene microarray experiments provide high throughput of gene expression levels from

one or more biological samples. Their use in determining disease-subclass and patient

prognosis is ever growing (Hubank [1]), with over 1,000 publications in the first half of

2003 alone (Ferl et al. [23]). By analysing the expression levels from the microarrays

any interesting patterns found can be used to suggest an individual gene, or groups of

genes, that are responsible for the different biological behaviour of the samples. Mi-

croarray data however is notoriously noisy, both random and systematic errors caused

by mistakes in the printing of the slides, preparation of the DNA probes, light intensity

measurements of the dyes used to mark samples and sample contamination itself can

occur (Miller et al. [2] & Medvedovic [4]). The data produced from these experiments

is also sparse due to the cost in preparing the samples, performing the experiment and

analysing the data.

The expression levels of many of the genes that are measured in the data sets are

irrelevant to the distinction, for example between two disease sub-classes, and it is

thought that only a few genes, acting in concert, are responsible for differences in

sample behaviour. These genes are generally over-expressed in one type of sample

and under-expressed in another (and vice versa). This is illustrated in Figure 1.1 which

shows levels of expression of genes responsible for distinguishing between two sample

1



Chapter 1. Introduction 2

LOW HIGH

Type 1

Sample

Sample
Type 2

HIGH LOW

Gene Set 1 Gene Set 2

Figure 1.1: Ideal Differential Gene Expression to Determine Disease Classification

sets. Of course this representation is not so simple in reality, noise would mean that

the distinction between types of samples would be somewhat blurred.

The goal of analysing the expression data then is to determine this small set of

signal genes through the noise of the vast majority of the genes that have no contribu-

tion to the signal. This can be done by a variety of statistical means (Brazma & Vilo

[5], Smyth, Yang & Speed [3]) and once this has been achieved a variety of machine

learning algorithms, such as supervised learning and clustering techniques, can then be

used to determine internal structures and relationships within the data and from those

the predictions of characteristics of samples and genes. Putative gene regulatory net-

works can also be modelled using Boolean, Bayesian or relevance networks (Butte [6],

Szallasi [7] & Friedman [8]).

1.2 An Example of Analysis of Microarray Data

The following work deals with the use of gene expression results from microarray ex-

periments on tissues taken from patients having either acute lymphoblastic leukaemia

(ALL) or acute myeloid leukaemia (AML). The data has been analysed by a number

of research groups and illustrates the numerous different methods of analysis available

to test hypotheses.

Golub et al. [11] attempted to find genes whose expression pattern was strongly
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correlated with the class distinction. They developed a method called ”neighbourhood

analysis” to find correlations between genes which had expression levels uniformly

high in one class and low in another. Roughly 1100 genes were found by this method

and the best 50 were chosen. Genes were also split into two equal groups, those with

high expression in ALL and low in AML and vice versa. The set of genes were applied

to the test set via self organising maps to find clusters of samples in this set. Good

results, with around 85% precision, were obtained for the AML and ALL labels and

also for the sub class of ALL data (T-cell and B-cell types). Poor results for clustering

patient response were observed; this was thought to be due to extra genes, outside those

being analysed, that affect drug performance.

Ben-Dor et al. [12] applied the CAST clustering algorithm implemented in the

BioClust analysis software, together with a list of machine learning algorithms which

included support vector machines (SVMs), boosting and nearest neighbours to classify

the test set. A set of genes were selected from the 7129 genes available via a feature

selection method called ’threshold number of misclassification’ (TNoM) which scores

genes having quite different values in the AML and ALL classes. Roughly 150 genes

were chosen via this method and the resulting classification into ALL and AML types

was generally very successful with precisions up to 90%.

Xing, Jordan & Karp [13] used information gain ranking on each gene against the

class label to select the ’best’ set of genes to use. Three classifiers were then used on the

datasets with 360 genes being selected. The classifiers employed K nearest neighbours

(KNN), a Gaussian model and a logistic regression algorithm. These gave excellent

results with precisions up to 99% when compared to using a randomly selected gene

set of the same size which gave averages of 36% error.

Getz, Levine & Domany [14] employed a novel coupled two way clustering (CTWC)

technique, using ‘super-paramagnetic clustering’ (SPC), to find patterns in the data.

First a subset of genes was selected by using only those genes that had an average

expression, taken over all samples, that was over a certain threshold. In the clustering

technique initially gene clusters using the samples as attributes were found, then only

those genes were used to cluster samples. This loop continued until stable clusters of

genes and samples were found. Very successful results were obtained that revealed
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one gene cluster that clustered the AML and ALL samples into two sets. Further sim-

ulations, using different gene clusters, found two clusters in the AML sample set that

differentiated patients based on the success of their treatment and likewise another

gene cluster separated the ALL samples into T-cell and B-cell sub-types.

1.3 Types of Microarrays

There are two dominant type of DNA microarrays. The first is made by ‘spotting’

cDNA probes at specific locations onto a glass side. The cDNAs are usually poly-

merase chain reaction (PCR) products or expressed sequence tags (ESTs) that are 500

to 1,000 bases in length and their spacing on the slide allows for more than 10,000

spots to be placed on one chip. Typically there is one probe per gene. For technical

reasons the information that is obtained from these microarrays generally gives the

relative ratio or concentration of a given transcript when two conditions are compared.

Samples of mRNA from two experiments are labelled with different dyes, pooled and

hybridized to the microarray by competitive hydridisation.

The second type are high-density oligonucleotide arrays commercially available

from Affymetrix. These microarrays contain between 11 and 20 pairs of oligonu-

cleotide probes for a target RNA, for which one of the pair is the reverse complement

to an ideally unique 25-mer in the RNA and the other contains a mutated middle base

pair and serves as a measure of stray signal. Using the differences between these two

intensities, the Affymetrix software used with the chips judges the reliability of each

probe pair and calculates a qualitative and quantitative measurement of expression

level. The construction of these chips is different to that used in the cDNA chips as

the probes are synthesised in situ onto the array using a combination of light-directed

combinatorial synthesis and photolithography.

The two different platforms have their own distinct advantages. Oligonucleotide

arrays can be designed and made directly from sequence information without the need

for physical intermediaries such as cDNA or PCR products. The large number of

probes used per gene are used to increase detection redundancy, and their short length

can be used to target the most unique regions of genes thereby improving the ability to
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discriminate between, for example, related members of a gene family. Spotted cDNA

arrays have the advantage of versatility as gene sets can be changed, expanded or

modified to include alternatively spliced genes or newly discovered genes. There is

also the possibility of constructing a custom array for any organism of choice and to

spot unknown cDNAs for gene discovery purposes.

1.3.1 Bridging Microarray Platforms

Expression measurements made across the two microarray platforms are not directly

comparable due to the differences in low-level hybridisation and analysis between the

two techniques. One of the first studies (Kuo et al. [9]) to compare published mea-

surements of, in theory, the same cancer cell lines measured from the two platform

types demonstrated that this was the case. There is also the problem that one gene

represented on one platform is not present on the other.

However, a method of bridging the data sets will be mooted in this work. In the case

where the same sample set is analysed on the different platforms the genes common

to both platforms can be used. By taking the expression measurement that shows the

least favourable sign of a signal from the two possible measurements and collating

these for the common set of genes between the platforms a set of gene expression

levels will be produced. This gene set will then represent the best predictor as it has

the likelihood of including any genes that may have a large systematic error but will

now have little impact on any prediction made. Consider for example a gene on one

platform producing a strong signal that has a poor signal on the other. By choosing

the poor signal the risk of including a false strong signal from the first platform will

be reduced. Of course the disadvantage of this method is that the size of the gene

predictor set is reduced but the hope is to remove those gene expression measurement

that may bring about false predictions.

1.4 Scope of This Work

In this work a new heuristic clustering algorithm (COSA by Friedman & Meulman

[15]) that can cluster objects based on subsets of attributes that have significantly dif-
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ferent signals between these objects will be the tool used to investigate microarray

data. The claimed advantage of this technique is that it can ‘see through’ the noise of

the vast majority of the gene and can find the small signal gene set without the use of

any of the statistical approaches referenced above.

The next chapter introduces the COSA algorithms together with a summary of their

derivation and the parameters used. Chapter 3 tests the algorithms on simple data then

Chapter 4 expands the test to synthetic data sets that attempt to mimic microarray-like

data sets. This task is important before applying the algorithm to any real data as its

parameters need to be tested thoroughly to assess their likely impact when determining

clusters. Chapter 5 then deals with the application of the algorithm to a real data set

involving disease classification and prediction of patient survival times. It is here that

the bridging technique introduced above will be tested alongside the more traditional

method of analysing microarray platforms independently. Clusters of samples, sets of

genes producing these patterns and patient survivability will be compared to existing

ones found from previous studies.



Chapter 2

Clustering on Subsets of Attributes -

COSA

2.1 Introduction

The COSA approach is to attempt to uncover distinct groups of objects that have sim-

ilar joint values over a subset of attributes. The method can also be extended to focus

on specific attribute values that are high or low, or both, in what is termed ‘targeted

clustering’. These properties of COSA thus make it suited to the analysis of gene ex-

pression values since, ideally, these have similar attribute value patterns (§1.1) to those

described above. The recent paper of Friedman & Meulman [15] describes a method to

implement this approach and this will be summarised in this chapter. The paper intro-

duces two different versions of COSA: COSA1 that can be used to calculate so called

COSA distances, or better described as dissimilarities, that can then be used with a par-

tition like clustering algorithm such as Kmeans or fuzzy cmeans, and COSA2 which

outputs dissimilarities that can be input to a hierarchical clustering algorithm. A ver-

sion of COSA2 was provided as an executable that could be used in the R statistical

software package running on Linux and Windows platforms. The intention for this

work was to code both COSA1 and COSA2 algorithms using Matlab. This would then

give platform independent code for both algorithms, the ability to input different dis-

tance measures into the algorithms (which was imperative for the bridging technique)

7
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and to provide versions of the algorithms that could be used outwith any external pack-

age such as R. The existence of an executable for COSA2 provided a sound baseline

for testing the Matlab version.

2.2 Summary of COSA

2.2.1 Attribute Value Data and Selection

The principal aim of clustering N objects is to produce subgroups of objects such that

those objects in each group are more similar to one another than to those from an

alternative group. If Nl is the number of objects assigned to the lth group and Wl is

a weight applied to that group then this aim can be defined as minimising a criterion

Q such as the weighted average over all groups Gl(1 <≤ l ≤ L), of the within group

mean distance, Di j between pairs of objects assigned to the same group, i.e.

Q =
L

∑
l=1

Wl

N2
l

∑
Gl(i)

∑
Gl( j)

Di j. (2.1)

Objects xi = (xi1, . . . ,xik, . . . ,xin), are usually described by a set of n measured

attributes and when this is the case the value of Di j can be expressed as a weighted

average of the individual attribute distances di jk, such that

Di j =
n

∑
k=1

wkdi jk (2.2)

where

di jk = δi jk/sk, (2.3)

with

δi jk = |xik − x jk| or |xik − x jk|2 (2.4)

and

{wk ≥ 0}n
l with

n

∑
k=1

wk = 1. (2.5)
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The value of sk in 2.3 above provides a scale for measuring the spread or dispersion

of the {xik}N
i=1 values over all objects and is often taken to be

sk =
1

N2

N

∑
i=1

N

∑
j=1

δi jk (2.6)

which can be approximated as

sk ≈ IQR({xik}N
i=1)/1.35 (2.7)

when considering robustness measures to counteract any outliers in the data and where

IQR is the interquartile range.

The weights wk can be chosen to reflect a prior knowledge that particular attributes

are more relevant than others to clustering the objects - the goal of feature selection, or

to give the same influence when set to {wk = 1/n}n
k=1. Using this approach clusters of

objects that simultaneously have small dispersions on all, or a subset, of the attributes

will be found where the dispersions Skl are given by

Skl =
1

N2
l

∑
Gl(i)

∑
Gl( j)

di jk. (2.8)

or when using medians for robustness,

Skl =
1
Nl

∑
i∈Gl

median{di jk} j∈Gl (2.9)

It can be shown that clustering based on using the distances in equation 2.2 with

equal or different attribute weights minimises the arithmetic mean of the attribute dis-

persions within each cluster when the criterion Q is being minimised.

2.2.2 Clustering on Different Subsets of Attributes

Although the goal of feature selection can be helpful, clustering on different subsets

of attributes cannot be achieved by this approach. It is achieved however by defining a

separate attribute weighting wl = {wkl}n
k=1 for each grouping Gl where

{wkl ≥ 0}n
l and

n

∑
k=1

wkl = 1. (2.10)
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and then minimising Q.

This approach however will yield to solutions that put a maximal unit weight on

the attribute with the smallest dispersion within each group Gl and the groups will thus

cluster on single attribute. To overcome this problem a penalty incentive involving the

negative entropy of the weight distribution for each group is introduced, this being

e(wl) =
n

∑
k=1

wkl logwkl. (2.11)

The minimum for the above function occurs when the weights are equal and is

correspondingly larger as the weights become more unequal. Using this approach the

distances Di j are transformed to

Di j =
n

∑
k=1

(wkldi jk +λwkl logwkl)+λ logn (2.12)

and the solution for the weights wkl when minimising Q now becomes,

wkl =
exp(−Skl/λ)

∑n
k=1 exp(−Skl/λ)

(2.13)

where increased weight is placed on attributes with smaller dispersions within each Gl

group and this increase is controlled by the meta-parameter λ. The λ parameter can

then be considered as a scale parameter in this heuristic algorithm. Setting it to zero

places all weight on the attribute k with the smallest dispersion Skl , whereas setting

it to infinity forces all attributes to be given equal weight within each cluster Gl . It

therefore has to be chosen with care when applying COSA a data set.

It can be shown that a new Q criterion can now be derived by inserting (2.12) and

(2.13) into (2.1) where

Q =
L

∑
l=1

Wl

[
−λ log

(
1
n

n

∑
k=1

exp(−Skl/λ)

)]
(2.14)

and minimising this function actually minimises the inverse exponential mean of the

attribute dispersions with the scale parameter λ, Skl/λ, within each cluster.
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2.2.3 Minimising the Clustering Criterion

The global minimisation of the above Q criterion is probably NP hard and is solved by

a dual optimisation method as follows:

1. Initialise all weights to wkl = 1/n.

2. Define interpoint distances Di j using equations 2.15 or 2.16 below.

3. Apply a clustering algorithm to assign clusters based on these weights.

4. Calculate new weight values based on equations 2.8, 2.9 and 2.13.

5. Calculate new distances based on these new weight values and loop back to item

2 and repeat until the weights converge.

The distances Di j are defined in either of two ways.

Distance one is given by

D(1)i j = Dη
i j

(
max(wk,li,wk,l j)

)
(2.15)

known as the maximum weight distance and Distance two, the maximum whole distance

is given by

D2
i j = max(Dη

i j[wk,li],D
η
i j[wk,l j ]). (2.16)

The terms Dη
i j are chosen to be based on a weighted inverse exponential mean

(§2.2.2) of di jk with a scale parameter η i.e.

Dη
i j = −η log

n

∑
k=1

wke−di jk/η. (2.17)

The above choice for Dη
i j is based on the fact that the initial weights W = /1/n/

are probably far from their global minimising values and the likelihood of converging

to a suboptimal solution of 2.14 is very high. A homotopy strategy is introduced such

that these distances evolve from their initial value of

Dλ
i j = −λ log

n

∑
k=1

wke−di jk/λ (2.18)
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to their final value of

lim
η→∞

Dη
i j =

n

∑
k=1

wkdi jk (2.19)

which are the ordinary distances from equation 2.2 via the use of a homotopy parameter

α where η = η + α.λ. This method ensures there is a high probability of retreating

out of a suboptimal solution to 2.14 at the start of the optimisation but ensuring that

this probability is lowered as the process evolves and in a way mimics the process of

simulated annealing.

Two important considerations must be made here. First too large a value of η will

cause too fast an evolution of the distances to their normal forms with a result that or-

dinary clustering will result, and secondly too high a value of λ will again cause COSA

to approximate to ordinary clustering by placing equal weight on all the attributes. The

authors point out that if the clustered groups tend to concentrate on small subsets of

the data the value of α should be taken to be small (α ≤ 0.1) causing a slow evolution

to the ordinary distances.

This homotopy parameter is then, once again, to be used with care when perform-

ing a data mining exercise with COSA.

2.2.4 COSA1 Algorithm Based on Kmeans

An algorithm called COSA1 is now given that uses the above methods and implements

a simple Kmeans algorithm to determine the clusters from the COSA dissimilarities

Di j.

1. Initialise W = {1/n}, η = λ, number of cluster partitions c.

2. Randomise partition centres.

3. Start loop of COSA1.

4. Start Kmeans loop.

5. Compute the distances, {Dic}N
1 from each point to each centre with equations

2.15 or 2.16 and using 2.17.
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6. Form clusters based on the Kmeans algorithm.

7. Form new cluster centres based on these clusters.

8. Return to step 4 until centres converge.

9. Compute weights W = {wl}L
1 equations 2.8 & 2.13.

10. Set η = η +η.λ.

11. Return to step 3 until W stabilises.

2.2.5 COSA2 Algorithm for Hierarchical Clustering

An alternative to the COSA1 algorithm is one in which each object is treated as a sep-

arate entity, not in a partitioned cluster, and the dissimilarities Di j can be calculated for

all objects. These values can be input into a standard hierarchical clustering algorithm

(e.g. single, average, complete etc. . . linkage) and the usual dendrogram displayed.

Clusters can then be extracted by eye or some automated technique by drilling down

from the root of the dendrogram. To enable COSA to determine the dissimilarities Di j,

values of the dispersion, Ski and hence the weights, wki attached to each attribute for

each object must be sought. This is achieved by considering, for each point, the nearest

neighbours that are closest to it in terms of the COSA dissimilarity Di j. If KNN(i) is

the K closest objects to i based on Di j then

KNN(i) = { j|Di j ≤ di(K)} (2.20)

where di(K) is the Kth order statistic of {Di j}N
j=1 sorted in ascending values. A value

for the dispersion for each object’s attribute can then shown to be

Ski =
1
K ∑

j∈KNN(i)
di jk (2.21)

or for robustness, especially when dealing with real data that has outliers, the median

of the di jk values can be used. From this a value of the weights wki for each object can

be deduced as
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wki =
exp(−Ski/λ)

∑n
k=1 exp(−Ski/λ)

(2.22)

where the matrix of weights W is now an n by N matrix representing a weight for each

object for each of its attributes.

From these derivations an algorithm, COSA2, for calculating COSA dissimilarities

between all sets of objects for use in a hierarchical clustering algorithm can be given:

1. Initialise: W = {1/n};η = λ.

2. Start COSA2 Loop.

3. Compute dissimilarities Di j - equations 2.15 or 2.16 using 2.17.

4. Compute the K nearest COSA neighbours for each point - equation 2.20.

5. Compute weights W = {wki} - equation 2.21 & 2.22.

6. Update η = η +α.λ.

7. End COSA2 loop, item 2, when W stabilises.

8. Output the dissimilarities Di j.

It can also be shown that the quality criterion Q for minimisation when using this

approach for hierarchical clustering can be given as the following expression

Q =
n

∑
1

[
1
K ∑

j∈KNN(i)
Di j +λ

n

∑
K=1

wki log(wki)

]
. (2.23)

2.2.6 Targeted Clustering

Instead of concentrating on distinct groups of objects that have similar joint values on

subsets of the attributes the distances di jk between objects for a particular attribute k

can be modified to reflect similarity to a desired value as well as between the objects

themselves. For example it may be of interest to find groups of samples where subsets

of genes have similar values and are either close to a high or low, or both high or low
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expression value. These would reflect the goal of finding samples having genes that

are differentially expressed (high or low) with dual targeting or only either high or low

co-expression with single targeting.

Single targeting can be achieved by modifying the distances on an attribute, k hav-

ing a target value tk as

di jk = max[dk(xik, tk),dk(x jk, tk)] (2.24)

where

dk(xik, tk) = |xik − tk|/sk (2.25)

where sk is defined by equation 2.6 or 2.7. Here the distances di jk will be small if both

the xik and x jk values are close to each other and close to the target value tk.

Dual targeting can be achieved by setting

di jk(tk,uk) = min[di jk(tk),di jk(uk)] (2.26)

where uk is some upper target value on the kth attribute and tk is a corresponding lower

target value. With this approach the distances di jk are small only when xik and x jk are

either both close to tk or both close to uk.

By setting the values of tk and uk to the values near the maximum and minimum

data values of the attributes (a good choice would be the 5% and 95% percentiles,

though this can be varied) the COSA clustering algorithm should then seek clusters

of attribute values near these levels while ignoring potentially more dominant clusters

with only moderate attribute values.

2.2.7 Missing Values

Any real world data mining task is usually plagued by problems with data that is miss-

ing. The task of representing this data by using only the given data is the subject of a

huge field of research and has many avenues of approach. A number of references de-

tailing this work is given by Smith [10]. The COSA authors recommend an approach

where the weight wk of attribute k is assigned a value of zero in the distance calculation
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of equation 2.17 if its value is missing on either object i or j. If two objects have no

non missing value in common then they are assigned an infinite distance so that they

are not placed in the same cluster.

However this approach can lead to situations where objects that appear to be in the

same cluster are actually forced to be apart. A simple case would be a scenario where

one object has a full set of attributes, a second only half but having the other very close

to the first and similarly a third but with the other half of attributes missing. All three

objects look identical to each other but this approach of modelling the missing data

would lead to the last two objects being forced apart.

For this reason it was decided not to follow this approach but instead to analyse

the data before input to COSA to find the best method of modelling and replacing the

missing data.

2.2.8 Importance Measure for Attributes

Once a cluster is found by COSA the set of attributes that have the most relevance to

the cluster can be found by using the value of the dispersion Skl given by equations 2.8

or 2.9 over all objects in the cluster l for a particular attribute k. An attribute score Ikl

can be given as

Ikl = [Skl + ε]−1 (2.27)

where ε−1 represents a maximum score (when the dispersion Skl is zero). This value

represents the inverse measure of the spread of xik values within a group Gl relative to

the spread over the whole set of objects. Of course this is the very criterion by which

COSA decides on how to cluster objects on subsets of such attributes. The larger

the value of Ikl the greater the likelihood it will contribute to the resulting clustering

pattern. It can be calculated, for large data sets, by the quick calculation

Ikl = IQRk(Gl)/IQRk(N) (2.28)

where IQR is the interquartile range.
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Such values then are useful, once the clustering has been revealed, to decide on,

for example, the most important genes that contribute to a cluster of patient samples

found by COSA.

2.3 Summary

The COSA algorithms have been introduced as a potential method to extract gene

expression signals that could determine, for example, disease classifications for patient

samples resulting from data from microarray experiments. Their advantage seems to

lie in the fact that, given the whole dataset of all genes the very small set of genes that

control such classifications may be found and that such genes can then be listed by an

importance score.

Both the COSA1 and COSA2 algorithms described here have been coded using

Matlab and were tested on very basic data sets as described in Chapter 3. Chapter

4 deals with the extension of tests by the enlargement of the data sets to represent

fictitious microarray data. The tests included the varying of various parameters that

control these heuristic algorithms to gauge their effect. Once these effects were known

the routines were exposed to actual real microarray data as detailed in Chapter 5.



Chapter 3

COSA Tests on Simple Data

To understand the mechanisms of the COSA algorithms, and to evaluate their potential

performance three simple data sets were constructed. The aim of this was to discover

any potential flaws in either COSA1 and/or COSA2 before the algorithms were applied

to the more complicated microarray type data. Both R and Matlab versions of the

COSA2 algorithm and the Matlab version of COSA1 were run in these tests.

3.1 Test Data Set 1

The first test data consisted of a set of twenty two-dimensional points, split so that one

half of the data set was aligned with one axis and the other half of the set aligned to the

other axis. The COSA algorithms should then form clusters of each of these subsets of

the data sets since their dispersions in one of the dimensions will be small and in the

other large.

The data set is illustrated in Figure 3.1 where a normal Kmeans algorithm has been

run to find two clusters shown whose centres are represented as the large diagonal

crosses. This shows that the two sets of data points cannot be split into the two sets of

horizontal and vertical data via this method.

18
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Figure 3.1: Test Data Set 1 With Kmeans

3.1.1 COSA1 Performance

Here COSA1 found the clusters as expected and inspection of the weights assigned to

each attribute in each of the two clusters (found from equations 2.8, 2.9 & 2.13) found

high weights associated with attributes with low dispersions in the clusters and vice

versa.

3.1.2 COSA2 Performance

Again COSA2 managed to split the data points as expected with strong weights found

for attributes with low dispersions in the clusters and vice versa (equations 2.21 &

2.22).

Plots of the clusters found, together with their centres are shown in Figure 3.2.

One interesting point found is that the two points which can be considered to be in

either cluster (the points in the top left of the plots) are switched between COSA1

and COSA2. For these points in COSA2 the weights, wkl (equation 2.22) were not as

strong (0.78/0.21) as the other weights which were close to unity/zero.

One disadvantage of the COSA algorithms can be seen, however, from the choice

of these data sets. These sets were chosen so that objects would cluster as they are

parallel to the coordinate axes and thus the dispersions of the subsets of attributes

forming each cluster is small. Under a rotational transformation of the axes this would
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Figure 3.2: Test Data Set 1 With COSA1 and COSA2
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Figure 3.3: Test Data Set 2 With Kmeans

not be the case. This is then one immediate drawback of the COSA algorithms in that

they are sensitive to such transformations.

3.2 Test Data Set Two

The test data set was then expanded by adding a second row of points that ran parallel

to the x-axis. This data set is shown in Figure 3.3 where a normal Kmeans algorithm

has been run with two and then three preferred clustering partitions requested.
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Figure 3.4: Test Data Set 2 With COSA1 - 2 Centres Requested

3.2.1 COSA1 Performance

It was at this position where COSA1 ran into problems. Figure 3.4 shows the result of

COSA1 when two clusters were requested.

Here the clustering is not as expected, since the two clusters would be expected

to be one set consisting of the vertical points and the other the two sets of horizontal

points. This would mean the first set of points would have a low dispersion with re-

spect to the x attribute and high for the y attribute. Correspondingly the other cluster

would have high dispersion on the x attribute and a smaller dispersion on the y attribute

(though not as small as in the case of test data 1 since the points occur at two distinct

values of y). Instead the clustering found a mixture of both sets of these points. Inspec-

tion of the weights associated with each attribute in each cluster showed that the weight

given to the y attribute was always greater then the corresponding value attached to the

x attribute. This discrepancy was thought to be due to the fact that only two centres

were requested where perhaps three was a more natural choice.

A further test was then performed with the number of preferred clusters set to three.

This simulation produced favourable clusters (shown in Figure 3.5) but the algorithm

did not converge and constantly flicked between the clusters shown in the figure (in the

lower row of horizontal data these points can be seen).

In order to ascertain the reason for this the quality of the clustering (simply the

sum of the within cluster COSA dissimilarities between each point in a cluster and
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Figure 3.5: Test Data Set 2 With COSA1 - 3 Centres Requested
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Figure 3.6: Quality of Clustering Associated with COSA1

their centre) was investigated at each iteration of the Kmeans algorithm. The outcome

is shown in Figure 3.6.

The oscillations observed from this test were also found when investigating the

differences in the centres of each cluster as the Kmeans algorithm within COSA1 pro-

ceeded. It is clear then that some problem exists with the algorithm as the data sets

are made more complex. One possible explanation is that the dispersions and resulting

weights are calculated on clusters that are defined by the hard rule of the number of

partitions requested before the COSA1 algorithm has converged. This is not the case

for COSA2 where the dispersions are calculated on clusters found by the K nearest

neighbour methods described in §2.25 which allows for fuzzy (or overlapping) clus-
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Figure 3.7: Test Data Set 2 With COSA2

ters of points and the final clusterings are not decided until COSA2 has converged and

the resulting dissimilarties are then investigated.

3.2.2 COSA2 Performance

COSA2 managed to separate the data into three distinct clusters and this is shown in

Figure 3.7 where the dendrogram, using average linkage on the COSA dissimilarities,

is plotted alongside the clusters with their centres. The labelled points are numbered

1-10 for the vertical cluster, 11-20 for the upper horizontal and 21-30 for the lower

horizontal. Here COSA2 has split the points into two well defined clusters initially

(the upper horizontal one having low dispersion on y, the remaining horizontal and

vertical sets having high dispersions both attributes). This second cluster itself has two

well defined sub-clusters, the middle horizontal and vertical elements.

Inspection of the weights associated with each attribute for each cluster showed an

excellent correlation between attribute dispersion and cluster, i.e. large dispersion and

small weight and vice versa.

3.3 Test Data Set Three

A final more complex data set was then constructed. Again a two dimensional data set

was used consisting of N objects, of which S represent a signal against the background
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of the random noise of the N−S objects. This was modelled by drawing N−S objects

from a n dimensional normal distribution with µ set to zero and σ set to unity with the

signal drawn from another normal distribution with µ set to 1.5, 2.5, 3.5 and 4.5 and

σ set to 0.2 to form the set. The whole sample set was then was standardised to have

zero mean and unit variance on all attributes. The construction of these data sets are

illustrated in Figure 3.8 with N being set to 100, S to 15 and n to 2 for these tests.

The aim of this experiment was to test the ability of each clustering algorithm to

separate the signal from the noise. This should have been easier with the data sets with

µ set to 4.5 than with 1.5 since by virtue of the standardisation of the data the signal

points alone have smaller variance when set with an initial higher offset average. The

results of the clustering would give a guide to the strengths of each algorithm since the

small dispersion of both attributes belonging to the signal data should be recognised

by both COSA1 and COSA2 as being distinct from that of the background noise which

had greater variance on its attributes. The power of the clusterings should also be seen

to increase as µ is increased. In the first instance a normal Kmeans algorithm was ran

on all four of the data sets and the results are shown in Figure 3.9.

Kmeans was successful at separating the signal with µ set to 4.5 and 3.5, five false

positives were obtained at µ = 2.5 and many at µ = 1.5. This result highlighted the

properties of the Kmeans algorithm, clusters that are more well defined from each

other (a greater distance apart and more tightly clustered) are easier to separate into
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Figure 3.9: Test Data Set 3 with Kmeans
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Figure 3.10: Test Data Set 3 with COSA1

distinct groups.

3.3.1 COSA1 Performance

The results using COSA1 on the data sets are displayed in Figure 3.10.

COSA1 performed less ably, with, though full success at µ = 4.5, four false posi-

tives found with µ set to 3.5 and many with µ set to 2.5 and 1.5. The oscillations that

occurred with test data set 2 also occurred with the last three of these data sets.

3.3.2 COSA2 Performance

The results using COSA2 on the data sets are displayed in Figure 3.11.

COSA2 performed best with full separation of the signal when µ was set to 4.5 and

3.5, only one false positive appeared with µ set to 2.5 and only three when µ was set to
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Figure 3.11: Test Data Set 3 with COSA2
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Figure 3.12: Quality of Clustering with Iteration Step Using COSA2

1.5.

The power of COSA2 could then be seen over Kmeans. The data set with µ set

to 1.5 is hard to separate with Kmeans since the clusters are close together whereas

COSA2 splits the data reasonably successfully since it is not searching for normal

Euclidian distances between the points but dissimilarity values that measure low dis-

persions of attribute values of sets of data points.

The algorithm also converged to its solution very quicky, typically the number of

iterations was between five and eight. A plot of the cluster quality criterion, represented

by equation 2.23, was made for one of these simulations. This is shown in Figure 3.12.

and shows that the minimisation of this quantity is achieved both smoothly and quickly.

3.4 Discussion

COSA1 and COSA2 were coded in Matlab and tested on a number of datasets. COSA2

proved to be excellent, predicting results well and being robust and fast. COSA1

proved less reliable, giving often poor results and proving unstable with the algorithm

not converging due to oscillations caused when calculating the new cluster centres.

The decision was then made to abandon COSA1 and keep COSA2 for the microarray

dataset simulations to be described in the next two chapters.



Chapter 4

COSA2 Tests on Synthetic Microarray

Data Sets

4.1 Introduction

The COSA2 routine, both the R version supplied by the authors of COSA and the

version in Matlab written in this work were then tested on a synthetic dataset built to

represent a typical data set of expression values resulting from microarray experiments.

The idea here was to investigate the effect of the various parameters of the algorithm

on any resulting clustering groups. Any important parameters that caused variations

in these groups would be noted ready for the simulation experiments performed in

the next chapter on real gene expression data sets. The tests would also reveal any

differences between the Matlab and the R versions of the algorithm.

The data set to be constructed consisted of a group of N objects described by n

attributes (genes) and was made up of two distinct parts, a signal and background noise

group, the former of which should be revealed by a clustering algorithm. The signal

group consisted of S objects randomly drawn from a n dimensional normal distribution

with µ set to 1.5 and σ set to 0.2, and the background noise group constructed from a

sample of N−S objects drawn from an n dimensional normal distribution with µ set to

zero and σ set to unity. Only the first no attributes of the signal group were taken from

the former normal distribution, its other n− no attributes were drawn from a normal

29
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Figure 4.1: Construction of Synthetic Microarray Data

distribution similar to the latter distribution. After generation the pooled sample was

standardised to have zero mean and unit variance on all attributes. The synthetic data

set thus differed between the signal and noise groups on only the first no attributes. A

figure illustrating this data set is shown in Figure 4.1.

4.1.1 The Power of the COSA2 Algorithm

Before the tests were run some simulations on the synthetic data were performed to

illustrate the efficacy of the COSA2 algorithm. Synthetic data sets were generated

with N set to 100, S set to 15, n set to 1000 and no set to 5, 10 and 20. Dis-

tances/dissimilarities between objects were calculated using normal Euclidian distance

between attributes as well as both dual targeting and non-targeted distances using

COSA2, were then calculated for each data set. An average linkage hierarchical clus-

tering algorithm was then applied to these values. Figure 4.2 shows the results.

From the figure it can be observed that no clusters were produced using Euclidian

distance whereas with COSA2, with no targeting set, a cluster started to appear with no

set to 10 which then became more defined with no = 20. With targeted distance a clus-

ter had already appeared when no was set to 5 and became a very distinct cluster with

no = 20. It should also be noted that with targeted distances the cluster appears, not at

the root of the dendrogram but among the leaf level since the algorithm is searching for

a small subset of attributes that are close to a given target value as well to each other.
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This fact then had implications for automatically finding clusters using dendrograms

as the clusters chosen are those found coming straight off the root of the dendrogram.

When using targeted distance with COSA2 the dendrograms would then have to be

inspected by eye to check for any clustered objects of interest.

The important attributes that decided this clustering in the case of no being set to 10

could then be found using equations 2.27 or 2.28. Figure 4.3 shows the most important

attributes and, as expected, these are grouped in the range 1 to 10.

A further plot, Figure 4.4, further illustrates this. Here histograms are plotted for

the ‘best’ five attributes as found above, for the signal objects, noise objects and both

signal and noise objects. It can be seen that the signal objects are defined by a narrow

range of attributes values that drive the clustering of this object set, whereas the noise

objects have a large variance around zero. The signal and noise objects taken together

show some signs of a bimodal distribution.

4.2 COSA2 Tests

The following tests were then performed on this test data in order to test the effective-

ness of COSA2 to split the signal group from the group of objects representing the

background noise:

1. The effect of the strength of the signal (no/n) for non-targeted, single targeted

(high or low) and dual targeted distances (high or low together).

2. The ability of normal clustering using a Euclidian distance with average linkage

to separate the signal form the noise.

3. The effect of the signal to noise ratio (S/N).

4. The effect of the number of nearest neighbours K used to define clustering

(§2.25).

5. The weighting scheme used to define the interobject dissimilarities (equations

2.15 or 2.16, §2.2.3 ).
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6. The effect of the scale parameter λ (§2.2.2).

7. The effect of the homotopy parameter α (§2.2.3).

In these tests a number of synthetic data sets were produced for each parameter

value of interest to give a statistical variation. Clusterings were found by applying an

average linkage hierarchical clustering algorithm to the dissimilarities calculated from

these data sets. Two clusters were then taken to be the those emerging from the root of

the dendrogram. From these, values of the true positives (TPs) - those signal objects

found in the cluster representing the signal, false positives (FPs) - noise objects found

in the calculated signal cluster, true negatives (TNs) - noise objects found in the cluster

representing the noise and false negatives (FNs) - signal objects that were placed in

the calculated noise cluster. Values of precision (alternatively named as specificity or

accuracy) = T P
T P+FP and recall (alternatively termed sensitivity or coverage) = T P

T P+FN

could then be calculated from these confusion matrices.

These simulations were then repeated for the Matlab version of COSA2 coded for

this work. Any significant differences between the precision and recall values were

noted via a paired t test (P <0.05).

In all test cases the number of attributes, n was set to 1,000 and the number of

objects, N, set to 100.

4.2.1 Strength of Signal for COSA2

Here the parameters of COSA2 were set to λ = 0.2, α = 0.0, the maximum weight

dissimilarity type (equation 2.15), the value of the K nearest neighbours set to
√

N

and the number of signal objects, S, set to 15. The signal attribute number, no was

then varied from close to zero up to N. The plots of precision and recall are shown in

Figure 4.5. No values are shown after no = 35 as these values were 1.0 in each case.

No significant differences were observed when run with the Matlab version of COSA2.

The simulations showed that the signal data can be retrieved with a signal attribute

number of around 25 with this ability falling off rapidly when the number of attributes

is around 15.
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Figure 4.5: Precision & Recall for Strength of Signal for COSA2

Another experiment was conducted where, for a small number of signal attributes

(actually no = 3), the scale parameter, λ, was varied in a large range of small values in

order to attempt to find the signal since small values of λ will focus on a small number

of attributes (§2.2.2). However with λ values varying from 0.1 to 1e-5 no increase in

the precision or recall values were found. The possible reason for this is that the noise

was completely obscuring that of the signal, no matter how small λ was made.

4.2.2 Strength of Signal for COSA2 With Lower Targeting of Dis-

tances

The above simulations were then repeated but this time searching for sub-sets of at-

tributes having similar values and close to the 5% percentile of each attribute of the

data. From the earlier discussion (§4.1.1) of the resulting dendrograms found with this

method it was not possible to automatically find clusters and this had to be done by eye

for each data set (§4.1.1).

For this test no clusters could be found for any of the signal strength values which

was to be expected as the signal was contained at the upper end of each signal attribute

distribution.
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Figure 4.6: Precision & Recall for Strength of Signal Using Euclidian Distance

4.2.3 Strength of Signal for COSA2 with Upper and Dual Targeting

of Distances

Again the above simulations were repeated but this time altering the distance between

attributes to be targeted at an upper limit (95% percentile of each attribute) and at the

upper or lower limit (dual targeting) or each attribute of the data. This time highly

defined clusters (precision and recall always 1.0 ) were obtained with signal strengths

starting from as low as no =5. Since the signal for each signal attribute was located at

the end of its distribution this is to be expected. No differences were again seen when

the simulations were repeated with the Matlab version of COSA2.

The high power of COSA2 in retrieving even very small signals is revealed here.

By restricting the search to the targeted distances the algorithm is then more likely to

find targeted clusters of interest rather than other more dominant clusters that prove to

be of perhaps less interest.

4.2.4 Strength of Signal for Hierarchical Clustering With Euclidian

Distance

Again the above simulations were repeated but this time the distances between objects

were calculated by using normal Euclidian distance rather than using COSA2. The

precision and recall plots are shown in Figure 4.6.
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Figure 4.7: Precision & Recall for Signal to Noise Ratio

Here the advantage of the COSA2 algorithm is evident with normal Euclidian dis-

tance being only able to split the signal and noise objects with a signal strength of

around 110 attributes.

4.2.5 Signal to Noise Ratio

In this simulation the number of attributes contributing to the signal was kept fixed

at no = 20 and the number of signal objects, S, was varied from almost zero to the

number of objects, N. All other parameters for COSA2 were as used for the above

tests. Again there was no significant differences observed when run with the Matlab

version of COSA2.

Plots of precision and recall are shown in Figure 4.7. Values are only shown for a

signal to noise ratio of 50%, a mirror of the graph occurs for the ratio 50% to 100%.

The figure reveals that for a signal strength of 20 attributes of 1000 the signal

could be split from the noise if the signal to noise ratio was over about 15%. The

poor performance with a very low signal (and also conversely for a very high signal,

for example close to 100%) can be explained by the fact that the importance of each

attribute is reduced as the dispersion for the objects of interest will be close to the

dispersion over all objects (see equation 2.28). These limitations can then be used as a

guide when applying to real data sets.
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Figure 4.8: Precision & Recall for K Nearest Neighbours Used to Define Clusters

4.2.6 Number of K-Nearest Neighbours Used to Define Clusters

Here the value of the K nearest neighbours used to define the clustering in the COSA2

algorithm was investigated. The authors of COSA2 claim that setting K to be
√

N is

sufficient and this claim was tested here. For this test the parameters for COSA2 were

as the last test but now with the fixed number of signal objects, S set back to 15. Plots

of the precision and recall of the clustered signal objects are shown in Figure 4.8.

The plots show that the K nearest neighbours can be set in the range of around 7

to 20 objects which is covered by the default value of
√

N though the values of 1.0 for

precision and recall may indicate that using a slightly higher value of K, say 15, may

produce better results. Again no significant differences were revealed with the use of

the Matlab version of COSA2.

4.2.7 A Comparision of the Different Dissimilarity Methods Used

As previously described (§2.2.3) two methods can be used to define the dissimilarity

between objects. This was investigated by repeating the method used in §4.2.1 but this

time using the alternative dissimilarity definition of maximum whole distance (equa-

tion 2.16).

The resulting values of the precision and recall were then plotted against the val-

ues obtained from the maximum weight distance (equation 2.15) to investigate if any

statistical difference occurred. These plots are shown in Figure 4.9.
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Figure 4.9: Cross Plots of Precision & Recall for Alternative Dissimilarity Definitions

The precision cross plot shows no significant difference between either weighting

scheme for the two dissimilarity measures (paired t test with P < 0.05), though the re-

call cross plot shows a significant difference (P =0.023) in favour of the first measure.

This corroborates with that found by the authors who reported a “sometimes superior

performance” (§5 of [15]). A similar difference was noted when using the Matlab

version of COSA2.

4.2.8 The Effect of the Scale Parameter λ

By setting the signal attribute number, no to 20 and the number of signal objects, S to

15 the value of λ was modified from 0.01 to 1.0. The resulting plots of precision and

recall for the signal objects are shown in Figure 4.10.

The effect of λ can be seen from the precision curve. For very small λ < 0.07

and for very large λ > 0.4 the precision drops dramatically. The effect of large λ can

be understood from the fact that the dissimilarity measure now approaches that of the

ordinary Euclidian distance (equations 2.2 - 2.4) with the consequences described in

§4.2.4. For small values of λ more focus is placed on a smaller number of attributes

that may be able to pick out the signal as they have the smallest dispersion (equation

2.8). However it transpires now that fewer objects in a cluster will have influence on

the estimated weights through equations 2.8 & 2.13 with the result that the variance of

these weights are increased with a consequent reduction in the power of the algorithm.
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Figure 4.10: Precision & Recall of Signal as the Scale Parameter λ is Varied

It is thus of crucial importance when using COSA2 that a value of λ is chosen that

is not too high or too low. This can be done by simple experimentation, i.e. varying

λ until stable clusters are attained. However by having some prior idea of the scale

of those small distances, di jk, on those attributes, k, upon which groups of objects

will preferentially cluster a value could be set for λ. This scenario though is hard

to determine in practice with ‘real-world’ data sets that are noisy and contain many

missing values.

It was also interesting to see the variation in the convergence of the COSA2 algo-

rithm. For small λ < 0.07 the number of iterations was large (> 20) and usually had to

be terminated before the difference in weights reached the prescribed tolerance level,

perhaps indicating that a solution was difficult to find. For large values of λ > 0.4 the

number of iterations was few (sometimes only 2 or 3) reflecting the quick transition to

Euclidian distance. For values of λ that gave good precision and recalls of the signal

the number of iterations was typically between 5 and 10. Again the Matlab version of

COSA2 revealed a similar scenario.

4.2.9 Variation of the Homotopy Parameter α

As previously described the homotopy parameter α is used to avoid becoming trapped

in local optima as the minimisation of the objective function in COSA is performed. It

effectively controls the rate at which the inverse exponential distance approaches the
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Figure 4.11: Precision & Recall Values for Signal Recovery as the Homotopy Parameter

α is Varied

ordinary distance (equation 2.19). Too small an evolution will cause the solution to be

trapped in local minima, too large and the ordinary distance is approached too quickly.

Plotted in Figure 4.11 are the precision and recall curves for the signal recovery as α
is modified from zero to around 105.

The values found proved misleading as though the behaviour at low α < 1.0 is

expected, for values greater than this, where the distance would evolve too quickly to

the ordinary distances, good precision and recall occur and this was surprising. When

the Matlab version of COSA2 was run with the same data however precision values

were obtained that were around 1.0 until α became 1.0 and the precision then dropped

dramatically (the recall values were always 1.0 for each value of α considered). These

values are shown in Figure 4.12.

Here the precision behaves as it should as the value of α was increased over 1.0.

Inspection of the weight changes (equation 2.22 and step 7 in §2.2.5) as the iteration

procedure evolved with α > 1.0 confirmed this. An initial small weight change when

η = λ in the first step of the COSA2 algorithm was then changed to a large weight

change when α was applied to η (step 6 in §2.2.5) with poor results obtained as the

distances approached the ordinary distances too soon.

The other outcome of this experiment was that α did not seem to improve the

outcome of the signal recovery when it was used. In fact the homotopy method did not

seem to affect the results when α < 1.0 and a value of zero could be used.
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Figure 4.12: Precision Values as Homotopy Parameter Value α is Varied Using the

Matlab Version of COSA2

4.3 Bridging Common Data Sets

In order to bridge two datasets that have common objects and attributes as discussed

in §1.3.1 the distances di jk are taken from each set and a new single distance matrix is

formed by taking the maximum distance for each di jk. In effect this has the effect of

overlapping the signal regions to produce only one signal region from the two datasets.

When clustered the bridged data would be expected to cluster on the common signal

objects with the important attributes arising from the overlapped signal attributes. This

scenario is illustrated in Figure 4.13.

A synthetic bridged dataset was formed from two synthetic data sets as described

above. Here one set of data was formed with a signal where S = 20 and no = 25,

and the other with S = 15 and no = 30 but this time starting at attribute 5. Running

COSA2 produced a cluster of 15 objects on the overlapped signal of 20 attributes with

the important attributes being those between 5 and 25 inclusive, justifying the above

argument. These attributes are shown in Figure 4.14.

4.4 Conclusions

The COSA2 algorithm, both that provided by the authors and the Matlab version pro-

duced for this work has been tested thoroughly for all variable parameters. In particular
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limitations have been placed on the signal to noise ratio as well as signal strength in

determining its recovery and how this can be increased if the attributes of the signal

are close to a high or low value of interest by using targeted clustering. The parameter

that has to be used with care is the scale parameter λ, whose effect must be investi-

gated in any simulation study. The homotopy parameter α did not have an effect on

any outcome and its value can be set to zero.

The bridging scenario which has been implemented in the Matlab version of COSA2

has also been discussed and succeeded when used with two synthetic datasets.



Chapter 5

Application of COSA - Diffuse Large

B-Cell Lymphoma

5.1 Introduction

Microarray experiments have been used to predict patient survival times, notably for

Breast Cancer (Van de Vijver et al. [17]) and T-cell acute lymphocytic leukaemia (T-

ALL) (Chiaretti et al. [16]). Diffuse Large B-cell Lymphoma (DLBCL) is a disease

that has been researched by a number of different groups to predict patient survival

times and more importantly, for this work, has been studied on both cDNA arrays by

Alizadeh et al. [18], with extended work by Rosenwald et al. [21], and on oligonu-

cleotide arrays by Shipp et al. [20]. An attempt has also been made to bridge the data

from the two platforms by Wright et al. [22] of which a summary was made by Ferl et

al. [23].

This data has been made available to the public and makes for a good case for anal-

ysis by the COSA2 algorithm. The initial aims were then, for each set of microarrays,

to independently find any interesting clustering patterns of the samples involved (such

as patient survival, patient IPI index or type of DLBCL) and to find the most important

genes that cause these patterns. These sample clustering patterns and genes could then

be compared to those found in the above studies.

Each of these studies is first summarised below followed with a description of the

46
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analysis by the COSA2 algorithm and a discussion of the findings.

5.2 Data from cDNA Arrays

Alizadeh et al. [18] studied 39 DLBCL samples, with approximately 8500 gene clones

on Lymphochip cDNA arrays. Hierarchical clustering of the data revealed two types

of DLBCL. One type expressed genes characteristic of germinal B cells (known as

Germinal Centre B-cell like, or GCB DLBCL) and the other expressed genes charac-

teristic of mitogenically activated blood B cells (termed Activated B-cell like, or ABC

DLBCL). Other gene expression signatures were also found; those related to prolifer-

ation cells, T-cells and lymph-node biology were also differentially expressed among

the clustered patient samples. However the signature belonging to the germinal centre

B-cells was found to vary independently of the other three and this signature was the

one deemed most important in clustering the samples. Using Kaplan-Meier analysis

[25] of the overall survival of DLBCL patients, grouped using the basis of the germinal

B-cell expression profile, revealed greater survivability of those patients with GCB DL-

BCL over those with ABC DLBCL. These survival figures were significantly greater

than those obtained by grouping the patients according to their International Prognos-

tic Index (IPI - an index based on patient age, stage of disease and other factors). The

conclusion reached by the authors was that molecular classification of tumours based

on gene expression measurements could identify clinically significant subtypes of can-

cer that were previously undetected. A 360 sub-set of genes that differentiated the

GCB and ABC samples together with the three other genetic signatures including their

ontologies and all patient data can be found at http://llmpp.nih.gov/lymphoma.

The work of Rosenwald et al. [21] extended the above work by analysing a larger

data set of 274 patients of which 240 were publicly available, with a similar set of gene

clones on the Lymphochip cDNA arrays. The patient data indicated type of DLBCL

as found by the analysis detailed below, together with survival statistics and IPI index.

By using a 100 gene subset of the GCB/ABC predictor of Alizadeh et al. [18] they

were able, by hierarchical clustering of these genes, to obtain three distinct clusters of

patient samples. These were the GCB and ABC DLBCL groups as described above
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and a third group, termed type III DLBCL, which did not express either set of genes

at a high level. Again Kaplan-Meier survival estimates indicated that those patients

with GCB DLBCL outlived those with the ABC type, and independently of their IPI

index. The type III DLBCL had similar survival estimates to the ABC DLBCL cases.

Although these results seemed to agree with the previous study the authors noted that

35% of patients with ABC DLBCL still survived after five years.

A further simulation was carried out to in order to identify those genes whose ex-

pression correlated with the patient outcome. Hierarchical clustering then grouped

these genes into 4 separate gene-expression signatures, akin to the previous work of

Alizadeh et al. The groups were identified as those expressed in germinal B-cells, pro-

liferating cells, lymph node cells and the major histocompatability-complex (MHC)

class II signature. A small 16 gene predictor was then constructed from each of these

groups of the genes that were significantly associated with survival. This group was

then found to predict better survival of the patients than that used with the GCB/ABC

gene predictor or those found using only the patients IPI index. The predictor’s great

power was revealed in the fact it could be used to subdivide patients within each sub-

group into distinct risk groups that were not recognised by the GCB/ABC subgroup

predictor or IPI data. In particular the predictor identified the few patients in the high-

risk group with a high IPI level who were long term survivors as well as those patients

in the low risk IPI group with a GCB type DLBCL who transpired to have a low sur-

vival time.

The 100 gene GCB/ABC predictor, together with the four gene signatures includ-

ing their ontologies and all the patient and raw Lymphochip data can be found at

http://llmpp.nih.gov/DLBCL.

It is also worth mentioning at this point the work done by Hastie et al. [19] on the

Alizadeh et al. work with their statistical tool called ‘Gene Shaving’. This tool uses

principal components analysis to find the top ‘super-genes’ that have the maximum

variance of expression data. Important genes can then be found by finding those genes

that have the largest inner product with the ‘super-gene’ (or in reality genes are dis-

pensed with that have low inner products with the ‘super-genes’). This leads to clusters

of genes that have coherent expression patterns and large variation across experimental
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conditions. The study differs from hierarchical clustering in that genes may belong to

more than one cluster and that the clustering may be supervised by an outcome mea-

sure such as survival times or type of disease. The technique can be unsupervised and

partially, or fully supervised by using known properties of the samples or the genes to

find any interesting groupings. Groups of genes resulting from unsupervised learning

as well as supervised learning were used to find clusters of samples that were related

to patient survival. Two groups of samples were discovered by this process and these

were found to have significantly different survival times. Lists of these genes are made

available in the paper.

5.3 Data from Oligonucleotide Arrays

The study of Shipp et al. [20] involved measuring the gene expression profiles of

58 patient samples on Affymetrix oligonucleotide microarrays containing 7129 probes

representing 8,817 genes. Patient data included survival statistics after treatment and

IPI indicies. The initial analysis involved finding those genes that were most highly

correlated with patient samples that were labelled cured versus those labelled fatal

or refractory. A list of the top fifty differentially expressed genes representing each

category was found and this then formed the basis of a cross validation prediction

model which used supervised learning methods such as SVMs and nearest neighbour

methods. Good predictions of the patient survival were made by the model and a small

thirteen gene set resulted from this. Kaplan-Meier analysis of the survival probabilities

of the two groups showed a distinct difference between those patients marked as cured

and those marked with fatal/refractory disease and improved upon similar analysis

using the IPI data indicating that this predictor provided additional information that

was not present in only the clinical prognosis information.

The group then sought to validate this model against the cell-of-origin model of Al-

izadeh et al. described earlier. In a sense this was their attempt to bridge data between

the two platforms though such comparisons are difficult due to the different genes mea-

sured by different methods on both platforms and the fact that the patient samples were

different. However the group proceeded to find the 90 genes that were represented on
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the Affymetrix array that were included in Alizadeh et al.’s predictor. Hierarchical

clustering of the samples using only this smaller gene set still split the samples of Al-

izadeh et al. into the GCB and ABC DLBCL types indicating that 90 overlapping

genes were sufficient to make this distinction. The 90 gene predictor was then applied

to the patient samples of their own study. Again a good split of two sets of patients

was observed and these sets were highly correlated with the cell of origin distinction,

though it must be emphasised that this was not a 100% distinction. However the split

of samples did not reflect the correlation between DLBCL type and patient survival,

indicating that this set of genes may have reflected cell-of-orgin but could not explain

the clinical variability in this particular data when measured on this type of platform.

This may be caused by the genes on the cDNA platform showing a false high or low

expression level, perhaps from some systematic error caused by the type of platform

and experimental measurement akin to the platform type; indeed the true measurement

may be the poor result on the alternative platform. The discrepancy in results may

also appear to corroborate that found by the Rosenwald et al. work where risk groups

within the type of DLBCL had to be found from other gene signatures to obtain good

predictions of patient survival. The observed difference could also be caused by the

genes of the cDNA that were not present on the Affymetrix oligonucleotide array with

a consequence that the latter’s predictor was missing some of the most discriminating

genes and was thus enriched for genes that only differentially expressed between the

GCB/ABC subgroups with a small statistical significance.

The group also sought to find support for their 13 gene outcome predictor in the

expression data of Alizadeh et al.. Three genes from the 13 were found to be repre-

sented on the cDNA Lymphochip and all of them were found to be highly correlated

with outcome though nothing of course could be said of the remaining ten genes. If all

genes were present it would have been interesting to determine if any of the predictor

genes did not produce a high correlation with outcome perhaps indicating potential

systematic errors in the measurement of the gene expression levels on one or both of

the platforms.

This study reveals the reasoning to bridge arrays concurrently. By using only those

genes common to both platforms to build a single predictor can the expression levels
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of a gene be reviewed and any discrepancies noted. The overriding problem though for

this to succeed is that both the same sample set must have been used on each platform

and this is not the case for this data.

Data for this study and list of predictor genes with their ontologies and all patient

data can be found at http://genome.wi.mit.edu/MPR/lymphoma.

5.4 Bridging the Platforms

The work of Wright et al. [22], which had been summarised by Ferl et al., attempts to

build a single patient survival model from the Rosenwald et al. and Shipp et al. data.

Their reasoning was to find those genes that discriminate the DLBCL subgroups with

most significance; 27 such genes on the cDNA platform were found and formed the

basis of a predictor. A linear predictor score was constructed for each sample based on

the summation of the expression value of each gene in the predictor group multiplied

by a scaling factor whose value was chosen to depend on the strength that a gene could

differentiate between the sample subgroups. The choice of scaling value was that of

the t statistic generated by a t test that determined the difference in gene expressions

between the DLBCL subgroups. A simple application of Baye’s rule could then de-

termine which DLBCL group that a sample outside those used to build the predictor

belonged to. A 90% cut-off level was also applied so that samples having scores of

less than this value were placed in a third group with no specification. The predictor

was tested by splitting the cDNA platform samples into two groups of training and

validation samples, and the resulting validation samples showed good rates of survival

for the GCB cases and poor rates for the ABC cases when analysed by Kaplan-Meier

analysis. A further success was obtained in reclassifying some of the type III subgroup

found by Rosenwald et al.

The predictor was then applied to the oligonucleotide data. To do this 14 genes

were found to be represented on the Affymetrix chip that were also present in the 27

gene predictor set on the cDNA Lymphochip. This set of genes were used to create

a new DLBCL group predictor by using the same scaling coefficients that were used

in the predictor on the cDNA chip but modifying the expression values of the genes
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to match the mean and variance of the corresponding genes on the cDNA chip. This

modification was necessary to account for any systematic measurement differences

between the two different platforms.

Application of this linear predictor score proved promising as the samples which

split into the two DLBCL groups, when analysed by Kaplan-Meier survival analysis,

showed a distinct difference in survival times, an improvement on the hierarchical

clustering method performed by Shipp et al. discussed earlier. The success of the

predictor can be traced to the fact that it employs only a small group of genes that best

discriminate the DLBCL types in the larger 274 sample study rather than the larger

gene predictor from the smaller group of samples from Alizadeh et al., containing

many genes that predict the differences with lower statistical significance. Adjustment

of the Affymetrix predictor using the cDNA Lymphochip gene data to help model the

systematic measurement differences between the the two array platforms also helped

in this success.

There are however some potential flaws in this approach. In particular, as pointed

out in the summary from Ferl et al. the process involved in building the predictor is

only unidirectional. It would be interesting to see if a predictor based on the oligonu-

cleotide data and applied to the cDNA would produce similar results. The predictor

used is also only a linear naive Bayes classifier and it would be interesting to apply

more advanced methods from machine learning to the problem. Another problem is in

the assumption that the ‘best’ genes on the cDNA platform revealed the ‘true result’

and that their expression levels were not in fact an artifact of some systematic error

associated in the build and subsequent experimental technique on that platform. This

scenario could be revealed by using the bridging process described in this work, i.e.

taking each expression level measurement from each common gene and choosing the

one that gives the worst differential level over all samples.

The gene expression data used in this study, together with the 27 and 14 genes used

in the predictors, including their associated ontologies, can be found at

http://llmpp.nih.gov/DLBCLpredictor.
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5.5 COSA analysis

The COSA2 algorithm was applied to each data set independently in order to find any

stable clusters of samples when varying the scale parameter λ for both targeted (differ-

entially expressed genes) and non-targeted distances. The important genes contribut-

ing to these clusterings could then be found by the importance measure as detailed in

§2.2.8. These genes could then be inspected with the predictors and gene signatures

taken from the studies described earlier to reveal any interesting sample groupings

and genes involved in producing these clusters. Patient survival times could then be

calculated for the sample groups to determine if any significant difference could be

observed.

5.5.1 cDNA Array Data

Here the data was taken from the Wright et al. study. Due to local computational limits

the number of samples had to be reduced from 274 to 60, ensuring a similar ratio of

the three types of DLBCL were present in the smaller sample set as was in the full set.

This data had many missing values. Missing data can be handled in a number of ways

(Smith [10]); statistical models can be used to predict values for the missing data from

the given data, or more simply the values can just be set to the mean of the attribute

they belong to. A recent study by Li & Gui [24] which uses the Rosenwald et al. data

identified, for each gene, eight genes that were the nearest neighbours according to

Euclidian distance. The missing data was then filled with the average of the nearest

neighbours. In this study a very crude approximation was made, the missing values

were set to zero which may have ramifications for the results. The sample set, along

with patient statistics (follow-up times, IPI index and status) and DLBCL type is shown

in Appendix A.1.

5.5.1.1 Sample Clusters Found

The value of λ was varied between the values of 0.1 and 0.4, as this was the region

found to produce stable clusters in the tests on λ as described in §4.2.8. Since there

was prior knowledge that differentially expressed genes would probably be present
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clusterings involving two distinct groups were sought. However this proved to be

difficult from the dendrograms produced from the COSA dissimilarities and was con-

founded by the results of targeting clustering which seemed to produce smaller sized

clusters that were sometimes a mixture of the clusters found by the non-targeting ap-

proach. Choosing clusters was thus a difficult and time consuming exercise. Few

definite clusters were found emerging from the root of the dendrograms, although a

utility provided by the authors of COSA [15] allowed a point and click mechanism for

choosing clusters when viewed in the R software package which then highlights the

clusters by surrounding them with a box.

A sample of a few of these dendrograms are illustrated in Figure 5.1 where the

dendrograms represent λ = 0.1 for both non-targeted and targeted along the top of

the diagram and those for λ = 0.2 for non-targeted and targeted along the bottom; all

dendrograms were produced using average linkage.

A set of two clusters that was the best fit from the dendrograms in Figure 5.1 was

chosen. Those resulting from the clusters formed where λ = 0.3 and 0.4 were discarded

as they showed significantly more variability (or as significant as the human eye could

deduce).

The two clusters, one having 28 patients, the other 32 are shown in Table 5.1,

together with the patient status, IPI Index and type of DLBCL. The patient indicies

can be found from the list of the sixty patients chosen from the Rosenwald et al. study

which is included in Appendix A.1.

The results are disappointing, the clusters showed no significant difference in pa-

tient status (χ2 test, P=0.74), IPI Index (P=0.25) and DLBCL type (P=0.057) although

the latter was close to the significant test (P < 0.05) indicating a possible correlation

between the different DLBCL type and the clusters.

Patient survival is shown in Figure 5.2 which was modelled by Kaplan-Meier anal-

ysis with the top curve showing the survival for cluster one. Applying G-ρ tests, with

ρ set to zero (the log-rank test [26]), to the survival curves showed no significant dif-

ference between the two plots (P = 0.265).
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Figure 5.1: Dendrograms Found from the cDNA Data

5.5.1.2 Important Genes

The closeness to a possible correlation between DLBCL type led to an investigation of

the most important genes contributing to the two clusters found using COSA2. By the

importance measure method defined in §2.2.8, equations 2.27 & 2.28, the twenty most

important genes were calculated for each cluster and both are shown in Figure 5.3 and

listed in Appendix B.1. The table indicates whether any of the genes were present in

the cell signatures and DLBCL predictor of Rosenwald et al., the predictors of Shipp

et al. and the genes found by the ‘Gene Shaving’ method. In the figures of importance

measure the genes are labelled with their unigene cluster if known, else their Genbank
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Patient ID Status IPI Index DLBCL Type

1-11,17,19-21 15 Alive 6 High 19 GCB

27,29,34,35 17 Dead 15 Medium 8 ABC

40,41,50-60 10 High 5 Type III

1 N.A.

12-16,18,22-26 11 Alive 3 High 8 GCB

28,30-33,36-39 17 Dead 9 Medium 12 ABC

42-49 14 High 8 Type III

2 N.A.

Table 5.1: Sample Clusters Found in the cDNA Study
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Figure 5.2: Kaplan-Meier Model Using cDNA Clusters
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Figure 5.3: Important Genes Found from cDNA Study

accession number if known or else their description.

It was noted that one gene clone in the first sample cluster and two gene clones

in the second sample cluster had maximum importance. This was traced back to the

fact that these attributes had many missing values and as a consequence the dispersions

over the clusters were zero. These genes were removed from the plots and the tables,

though their presence indicated that a better treatment of the missing data was needed.

Very few of the listed genes cross referenced with those found in the literature men-

tioned earlier. In the first cluster only one gene was present in the 100 gene DLBCL

type predictor, two in the lymph-node cell signature and two from the proliferation cell

signature as found by Rosenwald et al. In the second cluster four genes were found

in same authors’ lymph-node cell signature. No genes were found that corresponded

to any of the authors’ other signature lists, nor any described by Shipp et al., nor any

found in the ‘gene shaving’ method. It was also noted that no gene was common to

either of the two clusters and that the gene represented by unigene cluster id 412369

and found in the set producing the second cluster had a substantially higher importance

number (close to 9) that was at least twice as large as any other importance value.
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5.5.2 Oligonucleotide Array Data

The data set used in this simulation was that used in the Wright et al. study. This had

been normalised by the authors as follows. Genes were only used that were listed on

more than half of the samples and their signal was multiplied by a factor to make the

median value of these genes equal to 1,000. All signal values that were less than 50

were set to 50 and finally a log2 transformation was then applied.

5.5.2.1 Sample Clusters Found

In this case the clusters found were more stable over the same range of λ as used in

the cDNA data study though complete linkage rather than average had to be used to

reveal them. Targeted clustering again did not provide any more further information

regarding the structure of clusters. Examples of two dendrograms found from the

COSA dissimilarities are shown in Figure 5.4, one for λ = 0.1 the other for λ = 0.4.
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Figure 5.4: Dendrograms Found from the Oligonucleotide Data

The two clusters, one having 23 patients, the other 35 are shown in Table 5.2,

together with the patient status, IPI Index and patient outcome. The patient indicies

can be found from the list of the fifty-eight patients chosen from the Shipp et al. study

which is included in Appendix A.2.

The clusters showed no significant difference with regard to patient status (χ2 test
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Patient ID Status IPI Index Outcome

2-13,33,34 13 Alive 0 High 12 w/o disease

36-38,42,44,46 10 Dead 7 High Int. 11 w disease

49,55,57 5 Low Int.

10 Low

1 N.A.

1,14-32,35 18 Alive 2 High 20 w/o disease

39-41,43,45,47 17 Dead 10 High Int. 15 w disease

48,50-54,56,58 6 Low Int.

16 Low

1 N.A.

Table 5.2: Sample Clusters Found in the Oligonucleotide Study

P = 0.91), patient outcome (P = 0.92) or IPI Index (P = 0.85 with the high intermediary

values being placed in the high category and likewise for the low values for this study).

Patient survival is shown in Figure 5.5 which was modelled with Kaplan-Meier

analysis with the top curve showing the survival for patients in cluster one. Applying

the G-ρ tests as described above to the survival curves showed no significant difference

between the two plots (P = 0.431).

5.5.2.2 Important Genes

Using the importance measure for the genes in each cluster revealed the reason for the

similarity between the two clusters. The number of genes having maximum importance

in each cluster numbered around 750 and this was due to the preprocessing of the

expression levels as described above. By setting the expression levels to a constant

value if their value was below a certain threshold caused their dispersion to be zero

and due to the fact that many of the genes had this low value (around 1,700) across

most samples led to zero dispersions for many of them for each sample cluster. The

clusters found for this particular simulation by COSA are thus driven not by a group

of genes having a signal but rather by the genes with random low expression values
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Figure 5.5: Kaplan-Meier Model Using Oligonucleotide Clusters

representing the noise. Ways to counteract this failing are discussed in the ‘Further

Work’ section in the concluding chapter of this work.

5.5.3 Bridging the Data Sets

Unfortunately, due to the fact that the samples sets involved in all the studies discussed

previously are different the proposed bridging technique discussed in this work could

not be used. However, by looking at each set independently finding interesting gene

expression patterns resulting from sample clusterings was attempted but the problems

associated with the oligonucleotide data prevented this.



Chapter 6

Conclusion

The recent COSA algorithm proposed by Friedman & Meulman [15] that clusters ob-

jects on subsets of their attributes has been discussed (§2) and two versions have been

built; COSA1 using an internal Kmeans clustering algorithm, and COSA2 which out-

puts dissimilarities for use in hierarchical clustering algorithms. Both program ver-

sions were written in Matlab and provide both a platform independent means of run-

ning clustering studies and a flexible method of inputting different distance calcula-

tions between object attributes. When tested on very simple data sets (§3) the COSA1

algorithm revealed problems in finding stable clusters due to convergence problems

(§3.2.1). COSA2 on the other hand was very successful with these simulations and

this algorithm was then used with tests on synthetic microarray data sets (§4). Here

again COSA2 proved its success in being able to separate a small gene signal above

a background of random noise represented by the vast majority of the genes. The

power of the algorithm was illustrated in its ability to find such a signal well before a

hierarchical clustering algorithm, using normal Euclidian distances, was able to. The

targeted clustering method available with the COSA algorithms was also tested here

and showed a substantial improvement again on retrieving even smaller signals than

with no targeting. Since both COSA algorithms are heuristic the many parameters that

control their output was also tested at this stage. Limits of signal to noise ratio and

strength of signal that could be retrieved over a certain size of noise were found. Vari-

ations in the precision and recall of objects within well defined signal clusters gave

limits on the internal parameters used in the COSA2 algorithm. One parameter, the

61
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scale parameter, which effectively controls the number of attributes contributing to a

cluster was identified as the one to be used with care.

With COSA2 fully tested it was then applied to real microarray data (§5) from data

taken from samples of patients having diffuse large B-cell lymphoma (DLBCL). Such

data has been measured on both cDNA and oligonucleotide microarrays and many

studies have been performed to try to find gene signatures that classify the two types of

DLBCL as either Germinal centre B-cell like (GCB) or Activated B-Cell like (ABC).

The studies have also tried to find the link between DLBCL type and patient survival

times with the hypothesis being that those with GCB type have a more higher surviv-

ability and also to search for other genetic signatures that could explain the difference.

COSA2 was then applied to each of the two datasets independently in an attempt to

discover any important sample clusterings and the most important genes that caused

them. Sample groups were found, though the variation of the scale parameter men-

tioned earlier made for a difficult process in the the extraction of stable clusters. The

samples clusters found in each case proved disappointing with no clusters showing a

significant difference when compared with respect to patient outcome, status, progno-

sis index or survivability. The distinction between GCB and ABC type of DLBCL was

also not found. The possible reasons for this are stated in the section on ’Future Work’

below.

A possible method for bridging data from both types of microarrays concurrently

in order to trap any systematic error in one or both of the values produced was also

discussed (§1.3.1 & 4.3). The COSA2 algorithm coded for this work was written to

accept such data from two platforms. This method was tested on some artificial data

and proved successful (§4.3) though it could not be applied to the DLBCL data as the

samples involved were different.

6.1 Future Work

One of the claims of the COSA algorithm is that data such as microarray data can

be input immediately into it, without any need to weed out ‘noisy’ genes that would

not contribute to the signal and which could be found by preprocessing the data with
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statistical tools such as a t test. Instead COSA can take the whole data and find in-

teresting sample clusters regardless of the noise of the vast majority of genes. This is

an attractive option when dealing with microarray data and when testing on synthetic

microarray data this approach was found to be successful. However with the real data

from the DLBCL studies the algorithm seemed to fail to produce any meaningful re-

sults as sample clusters seemed to be randomly chosen. Inspection of the importance

measurement of the genes found in each of the clusters revealed many genes from the

oligonucleotide data that had the maximum importance, i.e. they had no dispersion

over the objects in the cluster. Of course this small dispersion is the force driving the

clustering in COSA but the preprocessing of the data by Wright et al. set many of the

genes with small signals to a constant value. Here COSA did its job but simply found

those genes that had been modified this way. The preliminary simulations on this data

then need to be repeated with the raw data from Shipp et al. For the cDNA data again

small numbers of genes were found to have a maximum importance and these were

traced to genes whose values were taken to be zero as they were missing. This very

naive way of modelling missing data then introduced certain genes that would have

very small dispersions if they contained a lot of missing values. Again this clustering

seemed to be driven by genes representing the noise of the data.

The conclusion here is then that real data cannot be simply thrown blindly at these

algorithms and that the important data mining task of initially inspecting data to look

for trends and missing data cannot be ignored. Once missing data is found it must be

decided to be either missing at random (MAR) or emerging from a systematic source

and modelled appropriately via the methods detailed by Smith [10] and references

within.

Once this task has been completed on both data sets the procedures applied in

§5.2 & 5.3 should be repeated to discover and interpret any interesting clusters. A

further simulation should also be performed using hierarchical clustering with normal

Euclidian distances rather than the COSA dissimilarities to determine whether COSA

is able to produce significantly more informative groupings of samples and genes than

this more conventional method.



Appendix A

Sample Lists used in DLBCL Studies

A.1 cDNA Microarray Data

The following set of 60 patient samples is a subset of the one used by Rosenwald et

al. [21]. They are listed with their patient ID as used in this study, follow-up time

in years, status (Dead or Alive), DLBCL type (GCB, ABC or Type III) and IPI Index

(Low, Med or High).

A.2 Oligonucleotide Microarray Data

The following set of 58 patient samples is the one used by Shipp et al. [20]. They are

listed with their patient ID as used in this study, IPI Index (Low, Low intermediate,

High intermediate and High), follow-up time in months, status (Dead or Alive with or

without disease) and outcome (expressed as 0 if without disease, 1 with).
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Patient Follow Status DLBCL IPI Patient Follow Status DLBCL IPI

ID up Type Index ID up Type Index

1 4 Alive GCB Low 2 4.9 Alive GCB Med

3 5.6 Alive GCB Low 4 12.1 Alive GCB Med

5 10.5 Alive GCB Low 6 9.6 Alive GCB High

7 9 Alive ABC High 8 7.4 Alive GCB Low

9 8.8 Alive GCB Med 10 8.1 Alive GCB Low

11 5.2 Alive Type III Low 12 8.1 Alive GCB Med

13 11.3 Alive GCB Low 14 4.3 Alive GCB Low

15 11.4 Alive ABC Med 16 7.2 Alive Type III Low

17 8.4 Alive GCB Med 18 5 Alive GCB Low

19 10.8 Alive ABC Med 20 7.7 Alive ABC NA

21 5.9 Alive GCB Low 22 9.7 Alive ABC Med

23 6.4 Alive ABC Low 24 10.1 Alive ABC Med

25 1.6 Alive Type III Low 26 4.8 Alive ABC Low

27 11 Dead Type III Med 28 5 Dead GCB Med

29 0.3 Dead ABC High 30 0.8 Dead Type III Med

31 0.6 Dead ABC Low 32 0.6 Dead GCB Med

33 0.9 Dead ABC Med 34 0.3 Dead GCB Med

35 2.5 Dead Type III Med 36 0.2 Dead ABC Low

37 0.6 Dead GCB Low 38 0 Dead Type III NA

39 0.3 Dead ABC High 40 2.5 Dead ABC Low

41 1.3 Dead GCB Low 42 0.1 Dead Type III High

43 1.7 Dead Type III Low 44 3 Dead GCB NA

45 2 Dead Type III Low 46 0.4 Dead ABC Med

47 2.8 Dead ABC Low 48 7.5 Dead ABC Low

49 4.5 Dead Type III High 50 0.6 Dead ABC Med

51 5.4 Dead GCB Med 52 0.3 Dead GCB High

53 0.4 Dead Type III Med 54 0.8 Dead Type III Med

55 2.4 Dead GCB Med 56 1.2 Dead GCB Med

57 1.2 Dead ABC High 58 16.9 Dead GCB Low

59 1 Dead ABC Med 60 10.6 Dead GCB High

Table A.1: Samples Used in the cDNA Study
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Patient ID IPI Index Follow up Status Outcome

1 Low 72.852 Alive w/o disease 0

2 Low 43.082 Alive w/o disease 0

3 Low intermediate 144.197 Alive w/o disease 0

4 High intermediate 61.016 Alive w/o disease 0

5 Low 86.459 Alive w/o disease 0

6 Low 84.197 Alive w/o disease 0

7 High intermediate 112.459 Alive w/o disease 0

8 Low 133.18 Alive w/o disease 0

9 Low 22.098 Alive w/o disease 0

10 Low intermediate 182.361 Alive w/o disease 0

11 Low 66.426 Alive w/o disease 0

12 N.A. 146.754 Alive w/o disease 0

13 Low intermediate 62.918 Alive w/o disease 0

14 Low intermediate 50.918 Alive w/o disease 0

15 Low 26.295 Alive w/o disease 0

16 N.A. 48.557 Alive w/o disease 0

17 High intermediate 55.934 Alive w/o disease 0

18 Low 12.59 Dead w/o disease 0

19 Low intermediate 50.164 Dead w/o disease 0

20 High intermediate 58 Alive w/o disease 0

21 Low intermediate 66.393 Alive w/o disease 0

22 Low 65.738 Alive w/o disease 0

23 Low 50.197 Alive w/o disease 0

24 Low 26.918 Dead w/o disease 0

25 Low 34.426 Alive w/o disease 0

26 Low 26.033 Alive w/o disease 0

27 Low 30.033 Alive w/o disease 0

28 Low intermediate 31.705 Alive w/o disease 0

29 Low 32.164 Alive w/o disease 0

30 Low 19.18 Alive w/o disease 0

31 Low 33.049 Alive w/o disease 0

32 Low 21.377 Alive w/o disease 0

Table A.2: Samples Used in the Oligonucleotide Study - Outcome 0
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Patient ID IPI Index Follow up Status Outcome

33 Low 15.738 Dead w/disease 1

34 High intermediate 11.574 Dead w/disease 1

35 High intermediate 3.377 Dead w/disease 1

36 Low 36.59 Dead w/disease 1

37 High intermediate 5.049 Dead w/disease 1

38 Low 9.475 Dead w/disease 1

39 High 3.213 Dead w/disease 1

40 Low intermediate 4.885 Dead w/disease 1

41 High intermediate 12 Dead w/disease 1

42 High intermediate 4.885 Dead w/disease 1

43 High intermediate 60.361 Dead w/disease 1

44 Low intermediate 16.262 Dead w/disease 1

45 High intermediate 16.426 Dead w/disease 1

46 High intermediate 9.475 Dead w/disease 1

47 High intermediate 15.574 Dead w/disease 1

48 High intermediate 17.77 Dead w/disease 1

49 Low intermediate 56.918 Dead w/disease 1

50 Low 13.344 Dead w/disease 1

51 Low intermediate 12.295 Dead w/disease 1

52 Low 44.557 Alive w/disease 1

53 High intermediate 4.623 Dead w/disease 1

54 High 7.508 Dead w/disease 1

55 High intermediate 19.344 Dead w/disease 1

56 Low 30.131 Dead w/disease 1

57 Low 33.607 Alive w/disease 1

58 High intermediate 13.902 Dead w/disease 1

Table A.3: Samples Used in the Oligonucleotide Study - Outcome 1
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Lists of the Important Genes Found in

DLBCL studies

B.1 cDNA Microarray Data

The two tables detail the most important gene clones for each of the two clusters found

from the COSA simulations of the data from Rosenwald et al. They are listed with their

accession ID, unigene cluster ID, description (ontology) and a note indicating whether

the clone occurred in any of the signatures or predictors as dicussed in Chapter 5. The

key is as follows:

• GR - present in the germinal B-cell signature of Rosenwald et al.

• PR - present in the proliferating cell signature of Rosenwald et al.

• LR - present in the lymph-node cell signature of Rosenwald et al.

• MR - present in the MHC Class II cell signature of Rosenwald et al.

• PredR - present in the 100 gene predictor for GCB/ABC/Type III DLBCL of

Rosenwald et al.

• PredS - present in the 19 gene predictor for patient outcome of Shipp et al.
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• PredC - present in the 90 common gene predictor for GCB/ABC DLBCL of

Rosenwald et al. & Shipp et al.

• GS - present in the genes found by “Gene Shaving ” by Hastie et al.

B.2 Oligonucleotide Microarray Data

No genes were listed for this study due to the problems encountered with the prepro-

cessing of the gene expression data causing the most important genes to be simply

random noise.
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Accession ID Unigene ID Description Note

Hs.291761 Homo sapiens transcribed sequence

NM 005345 Hs.75452 heat shock 70kDa protein 1A

L04270 Hs.1116 lymphotoxin beta receptor LR

AF220560 Hs.26971 B/K protein

AF071593 Hs.110457 Wolf-Hirschhorn syndrome candidate 1 PR

NM 006433 Hs.105806 granulysin LR

Hs.87280 hypothetical protein MGC35578

M25322 Hs.73800 selectin P

AB014568 Hs.406612 unc-84 homolog B (C. elegans)

M37435

Hs.136648 Homo sapiens transcribed sequences

M29474 Hs.73958 recombination activating gene 1 PR

L12052

LC 32861

Y12781 Hs.76536 transducin (beta)-like 1X-linked

U16261 Hs.315463 interleukin 24

U15637 Hs.297660 TNF receptor-associated factor 3

AF055376 Hs.30250 v-maf musculoaponeurotic fibrosarcoma

X15949 Hs.83795 interferon regulatory factor 2 PredR

AF151904 Hs.42409 CGI-146 protein

Table B.1: Top 20 Important Genes Found from the cDNA Data Using Cluster 1
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Accession ID Unigene ID Description Note

Hs.412369 Homo sapiens transcribed sequence

Hs.446190 Homo sapiens transcribed sequences

X55740 Hs.153952 5’-nucleotidase, ecto (CD73)

BC008666 Hs.31386 secreted frizzled-related protein 2

X06562 Hs.125180 growth hormone receptor

X68742 Hs.116774 integrin, alpha 1

NM 002982 Hs.303649 chemokine (C-C motif) ligand 2 LR

M16553 Hs.62192 coagulation factor III (thromboplastin, tissue factor)

U09278 Hs.418 fibroblast activation protein, alpha LR

X02761 Hs.287820 fibronectin 1 LR

LC 15918

X92845 Hs.75789 N-myc downstream regulated gene 1

M24122 Hs.1815 myosin, light polypeptide 3, alkali;

Hs.446256 Homo sapiens transcribed sequences

U43142 Hs.79141 vascular endothelial growth factor C

L22569

M24173 Hs.272003 hemoglobin, zeta

Hs.275438 histone deacetylase 7A

NM 005253 Hs.301612 FOS-like antigen 2

L13698 Hs.65029 growth arrest-specific 1 LR

Table B.2: Top 20 Important Genes Found from the cDNA Data Using Cluster 2
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Matlab Source Code

Matlab source code to run both the COSA1 and COSA2 routines can be found on

the University of Edinburgh’s Informatics DICE system, under the project/cosa/matlab

directory of user s0343361. Included here are the headers of the routines for reference

purposes.

Note that a matlab routine, quantile.m, which mimics the quantile function found in

the R statistical package, is needed to run some of these routines. It can be downloaded

from http://home.online.no/˜pjacklam. Alternatively, if using the Matlab Stats toolbox

the quantile functionality can be found by replacing the quantile function with the

percentile.m function.

C.1 COSA

C.1.1 cosa1.m

This code implements the COSA1 algorithm.

function[clusters, weights, iter, qual1, qual2, centrediff] =

cosa1(xdata, nclusters, lambda, alpha, niter, iweight, itargs,

lquant, hquant, irobust, idebug)

%

% Matlab version of COSA1 algorithm by Friedman & Meulman 2004
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%

% Input:

%

% xdata - input data, nosobjsxnosfeats

% nclusters - number of clusters

% lambda - the scale parameter

% alpha - the homotopy parameter

% niter - max number of iterations

% iweight - distance decided on max. weights (33 - iweight=0) or

% max. whole distances(30 - iweight=1)

% itargs - targeted distances, 0-none, 1-lower, 2-upper, 3-both

% lquant - lower quantile

% hquant - upper quantile

% irobust - 0 for mean calculations,

% 1 for medians calculation of dispersions

% idebug - 0 for no debug, 1 for extra debug information,

% 3 for plots of 2d clusters and debug

%

% Output:

%

% clusters - row of clusters

% weights - matrix of weights - nclustersxnosfeats

% iter - the last iteration step

% qual1 - quality of clustering 1

% ( eqn 16 with mods just for centres to each point)

% qual2 - quality of clustering 2 ( eqn 23)

% centrediff - diff of kmeans centres

%

C.1.2 cosa2.m

This code implements the COSA2 algorithm.
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function[diss, dissmatrix, weights, iter] = cosa2(xdists, lambda, alpha,

niter, iweight, knear, irobust, idebug)

%

% Input:

%

% xdists distances - nosobjsxnosobjsxnosfeats

% lambda - the scale parameter

% alpha - the homotopy parameter

% niter - max number of iterations

%

% iweight - distance decided on weights (eqn 33 - iweight=0) or

% whole distances(eqn 30 - iweight=1)

% knear - nearest neighbours used in dispersion calc - default is

% sqrt(nosobjs)

% irobust - robustness parameter 0 = means, 1 - medians for dispersion

% calculations

% idebug - 0 no debug, 1 debug output,

% 2 = plots of cluster quality at each iteration, no debug

%

% Output:

%

% diss - vector of dissimilarities - nosobjsx(nosobjs-1)/2

% lower traingle of dissmatrix columns

% dissmatrix - matrix of dissimilarities - nosobjsxnosobjs

% useful for R program

% weights - matrix of weights - nosobjsxnosfeats

% iter - the last iteration step

%
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C.2 Attribute Distance Calculations

C.2.1 dists.m

This code calculates the distances between attributes of a data set.

function[dist,diff] = dists(xdata, itargs, irobust, idist, lquant, hquant)

%

% Matlab version of COSA2 algorithm by Friedman & Meulman 2004

% Computation of distances (euclidian and squared euclidian

% - see idist arg. )

% with input of targeted attributes

%

% Input:

%

% xdata is array of data, rows are nosobjs objects,

% columns are nosfeats features/attributes/dimensions

% itargs - targeted data: 0 - no target, 1 low target = lower quantile

% 2 - high target higher quantile,

% 3 - both lower and upper

% irobust - 0 - use means, 1 - use medians in dispersion calculations

% idist - 0 - use absolute difference |xik-xjk|, 1 - use square of this

% lquant - lower quantil values for itargs >=1

% hquant - upper quantile for itargs >=2

%

% Output:

%

% dist - matrix of distances - nosobjsxnosobjsxnosfeats

% diff - matrix of actual distances (not divided by dispersion of attribute)

% nosobjectsxnosobjsxnosfeats
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C.2.2 distsupdate.m

This code updates the distances between attributes of a data set for use in the COSA1

algorithm.

function[dist] = distsupdate(xdata, diffsexist, istart, itargs, irobust,

idist, lquant, hquant)

%

% Computation of distances (euclidian and squared euclidian -

% see idist arg. )

% with input of targeted attributes

%

% Additional routine that updates distances on certain rows/columns

% given an existinbg ditsnce matrix - for use with COSA1

%

% Input:

%

% xdata is array of data, rows are nosobjs objects,

% columns are nosfeats features/attributes/dimensions

% diffsexist - existing actual distance array calculated from dists

% istart - start row of xdata where updated dists need be calculated

% itargs - targeted data: 0 - no target,

% 1 low target = lquant quantile

% 2 - high target hquant quantile,

% 3 - both lower and upper

% irobust - 0 - use means, 1 - use medians in dispersion calculations

% idist - 0 - use absolute difference |xik-xjk|, 1 - use square of this

% lquant - lower quantil values for itargs >=1

% hquant - upper quantile for itargs >=2

%

% Output:

%
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% dist - matrix of distances - nosobjsxnosobjsxnosfeats

%

C.2.3 distsbridge.m

This code calculates the maximum distances between attributes of two data sets for use

in bridging two data sets.

function[dist,dist1,dist2] = distsbridge(xdata1, xdata2, itargs, irobust,

idist, lquant, hquant)

%

% Computation of distances (euclidian and squared euclidian -

% see idist arg. )

% with input of targeted attributes.

%

% This is the bridged version where two data sets are input

% and a single distance matrix

% is output based on the maximum distance between points along an attribute

%

% Input:

%

% xdata1 is array of data, rows are nosobjs objects,

% columns are nosfeats features/attributes/dimensions

% xdata2 is array of data, rows are nosobjs objects,

% columns are nosfeats features/attributes/dimensions

% itargs - targeted data: 0 - no target,

% 1 low target = lower quantile

% 2 - high target higher quantile,

% 3 - both lower and upper

% irobust - 0 - use means, 1 - use medians in dispersion calculations

% idist - 0 - use absolute difference |xik-xjk|, 1 - use square of this

% lquant - lower quantil values for itargs >=1



Appendix C. Matlab Source Code 78

% hquant - upper quantile for itargs >=2

%

% Output:

%

% dist - matrix of distances - nosobjsxnosobjsxnosfeats

% dist1 - matrix of distances for data 1 - nosobjsxnosobjsxnosfeats

% dist2 - matrix of distances for data 2 - nosobjsxnosobjsxnosfeats

% above two for checks only

C.3 Attribute Importance

C.3.1 importance.m

This code determines the importance of each attribute in a group of objects.

function[att, imp] = importance(xdatadists, cluster, maximp)

%

% Find importance of attributes in a cluster using

% inverse dispersion measure

%

% Input:

%

% xdatadists - input data distances, nosobjsxnosobjsxnosfeats

% cluster - cluster of interest, array of size sizeclus

% maximp - the maximum importance number (1/nos of attributes of interest)

%

% Output:

%

% att - attributes in decreasing order of importance

% imp - associated importance of the attributes

%
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C.3.2 importancef.m

This code determines the importance of each attribute in a group of objects.

function[att, imp] = importancef(xdata, cluster, maximp)

%

% Find importance of attributes in a cluster on (inverse) dispersion measure

% FAST calculation

%

% Input:

%

% xdata - input data, nosobjsxnosfeats

% cluster - cluster of interest, array of size sizeclus

% maximp - the maximum importance number (1/nos of attributes of interest)

%

% Output:

%

% att - attributes in decreasing order of importance

% imp - associated importance of the attributes

%
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